https://unnews.univ-nantes.fr/medias/photo/mars_1626855254601-jpg
  • Le 23 juillet 2021
    false false

Après plus de deux ans de surveillance sismique martienne, l’équipe internationale de la mission Insight de la NASA, à laquelle collabore le laboratoire de planétologie et géodynamique (LPG Nantes - CNRS / Université de Nantes / Université d’Angers), a dévoilé vendredi 23 juillet la structure interne de Mars. Trois études publiées dans la revue Science révèlent pour la première fois une estimation de la taille du noyau, de l’épaisseur de la croûte et de la structure du manteau. Il s’agit de la première exploration par la sismologie de la structure interne d’une planète tellurique autre que la Terre et d’une étape importante pour comprendre la formation et l’évolution thermique de Mars.

Mars Avant la mission InSight de la NASA, la structure interne de Mars était encore mal connue. Les modèles ne reposaient que sur des mesures recueillies par les satellites en orbites ou l’analyse des météorites martiennes retombées sur Terre. L’épaisseur de la croûte, avec les seules mesures de gravité et de topographie, était estimée entre 30 et 100 km. Les valeurs du moment d’inertie et de la densité de la planète suggéraient un noyau avec un rayon entre 1400 et 2000 km. Les détails de la structure interne de la planète et la profondeur des frontières entre croûte, manteau et noyau, étaient, eux, complètement inconnues.

Avec le succès du déploiement de l’expérience SEIS à la surface de Mars début 2019, les scientifiques de la mission, dont les 18 co-auteurs français impliqués et affiliés à de nombreuses institutions et laboratoires français, et leurs collègues de l’ETH de Zurich, de l’Université de Cologne et du Jet Propulsion Laboratory de Pasadena, ont collecté et analysé les données sismiques d’une année martienne (soit presque deux ans terrestres).
 

Une croûte altérée, un manteau dévoilé et un grand noyau liquide

En comparant les comportements des ondes sismiques, lors de la traversée de la croûte avant d’atteindre la station Insight, plusieurs discontinuités dans la croûte ont été identifiées : une première, observée à environ 10 km de profondeur, marque la séparation entre une structure très altérée, résultant d’une très ancienne circulation de fluide et une croûte peu altérée. Une seconde discontinuité vers 20 km puis une troisième, moins marquée vers 35 km, révèlent la stratification de la croute sous InSight. Dans le manteau, ce sont les différences entre le temps de parcours des ondes générées directement lors du séisme, et celui des ondes générées lors de la réflexion de ces ondes directes sur la surface qui ont été analysées.

Ces différences permettent avec une seule station, de déterminer la structure du manteau supérieur, et notamment la variation des vitesses sismiques avec la profondeur. Or, ces variations de vitesses sont liées à la température. « Ceci nous permet d’estimer le flux de chaleur de Mars qui serait ainsi de trois à cinq fois plus faible que celui de la Terre, et d’émettre des contraintes sur la composition de la croûte martienne qui concentrerait plus de la moitié des éléments radioactifs producteurs de chaleur présents dans la planète », ajoute Henri Samuel, chargé de recherche CNRS à l’IPGP.

Enfin, dans la troisième étude, les scientifiques ont recherché les ondes réfléchies par la surface du noyau martien, dont la mesure du rayon est un des principaux résultats de la mission InSight. Malgré les faibles amplitudes des signaux associés aux ondes réfléchies (appelées ScS), un excès d'énergie est observé pour les noyaux avec un rayon entre 1790 km et 1870 km. Une telle taille implique la présence d’éléments légers dans le noyau liquide et a des conséquences majeures sur la minéralogie du manteau à l’interface manteau/noyau.


Objectifs atteints, et de nouvelles questions émergent

Après plus de deux ans de surveillance sismique martienne, le premier modèle de la structure interne de Mars est obtenu, et ce jusqu’au noyau. Mars rejoint ainsi la Terre et la Lune dans le club des planètes et satellites telluriques dont la structure profonde est explorée par la sismologie.

Et comme souvent en exploration planétaire, ce sont de nouvelles questions qui sont soulevées : l’altération de la croûte sur les 10 premiers kilomètres est-elle générale ou limitée à la zone d’atterrissage d’InSight ? Quel sera l’impact de ces premiers modèles sur les théories de formation et d’évolution thermique de Mars, en particulier pour les premiers 500 millions d’années où Mars avait de l’eau liquide à sa surface et un fort volcanisme ? Avec la prolongation de deux ans de la mission InSight et la puissance électrique supplémentaire obtenue suite au nettoyage de ses panneaux réalisé par le JPL, des nouvelles données consolideront et amélioreront encore ces modèles.